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CHAPTER ONE

11; ODUCTION

1.1 Problem Statement

The problem of estimating the angular location of d sources

using an array of a sensors is addressed. The sources are assumed

to be in the far field with respect to the physical size of the

array. The signals received by the sensors are generated by the

sources themselves. For this reason, the direction finding system

used in this work is classified as passive. The general system

configuration is shown in Fig. 1.1.

It is assumed that the model which governs the signal received

th
at the i-h sensor is of the form

d
yi(t..!) - k sk(t)ai(ek) + ni(t) ; iil,2,... ,m (1.1-)

km I

th
where Sk(t) is the complex envelope of the k;- signal, e is the vector

eT (e1, e2,...,edl

thwhere the i- entry e± corresponds to the angular position of the

thth thi--- source, ai(ek) is the response of the i-! h sensor to the kz-

source, and ni(t) is the additive noise. This noise is the sum of

external and internal noise. External noise is assumed to be received

uniformly from all directions while the internally generated thermal

noise is assumed to be identically distributed in each of the a

channels.
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In this research the signals generated by the sources are

assumed to be narrovband. A signal is classified as narrowband

if its bandwidth is small compared to the inverse of the transit

time of a wavefront across the array. Given N snapshots of noise

corrupted data collected at the m sensors, the problem is to estimate

the angular position of the d sources.

1.2 Previous Results

The problem of estimating the bearing or direction of arrival

(DOA) of radiating sources has occupied many researchers in the last

two decades. This problem has applications in areas such as sonar,

radar, radio-astronomy, and seismology. Also, the performance of

angle of arrival estimators plays an important role in determining

the ultimate capability of any surveillance system. Originally, this

problem was formulated in terms of the classical Bayesian and/or

Neyman-Fearson decision theories [1], [2]. However, because this

approach suffered from several deficiencies, a variety of new techniques

have been proposed in recent years. In this section we review some

of these methods.

Maximum Likelihood and Least-Squares Estimates

Two very popular approaches for constructing parameter estimates

are the maximum likelihood and the least squares techniques. Applica-

tion of the maximum likelihood approach to the diiection finding problem

is discussed by Blhme (3]. Let

T



denote the complex array data vector where(-)T stands for the transpose

operator. A maxiaw likelihood estimate (M.E) can be found provided both

the probability density f(QIe) of the data vector Y is known and the

likelihood function

L(O) - log f(YIt

can be maximized over the parameters

An estimate e maximizing L(e) over e is defined to be an MLE of 6.

B~h=m points out that the MLE can be heavily biased. However, for

independent and identically distributed random variables y1 (t ,),

Y (t l'f- ' ' ' y m (t,.), consistent MLE e are asymptotically normally

distributed and efficient. This means that the distribution of

va (6 - 6) approaches the normal distribution with zero man and

covariance matrix given by the inverse of the Fisher information

matrix

a nf(y 11) a Znf (yj)
J a 

'  e - ( a e I }

where (.) stands for the Hermitian operator, E6 means expectation with

respect to a and s/a/e is the column vector with elements J&

An estimate of e can also be obtained using the leasi. squares

approach. For the narrowband case, the data vector .has the

following form

Y - AS + N (1.2-1)

, adneiune to smsma~a - i ai b ra4



where the (m x d) matrix A is the direction matrix whose columns

{a(ek), k- ,2...,d 1 are the signal direction vectors for the d

wavefronts.

S (s 1 (t), s.(),..., sd(t)] T where sk(t) is the complex envelope of

the k; signal. The (m x 1) vector N represents the additive noise

at the a sensors. In this approach one attempts to fit a signal

model to the data vector Y in the least squares sense; that is,

the error

EA IY-A S 2

is Minimized by choosing S and 8 [4]. If we set the derivatives

of E with respect to the unknown parameters to zero in trying to

minimize E, we realize that some of the necessary conditions are in

the form of nonlinear equations. Attempting to solve this nonlinear

set of equations is computationally very involved. A different

approach to this minimization problem was suggested by several

authors [5 - 8]. The idea is to choose values of S based on some a

priori knowledge or based on some preprocessing and find the associated

6 that Minimize E. Then the values of S can be altered to find new

values for 9 that give a lower minimum for E. This process is repeated

until a local minimum for E is found, and the corresponding S and -

are the estimates of the unknown paramters. This is essentially

a search procedure. R. Wang [91 coments that if no a priori

information is available, the local minimum that is first reached may

give an estimate which is far from the true values. Both approaches

5



discussed above prove to be computationally very involved tasks.

Beamforming

Beauforming is one of the oldest ideas in array processing

for determining the bearing of a target. A simplified block diagram

of a delay-and-sum beamformer is shown in Figure 1.2. The idea is to

align the propagation delays of a signal presumed to be propagating

in a direction -k so as to reinforce the signal (10]. For example, if

the sensor delay T; i,2,...,m, is ideally adjusted to compensate

for the signal delay (Z, • k)/c, where Z is the spatial location of

th
the i-' sensor and c is the speed of propagation, the signal power

in the beam is m2 times that measured at each sensor while the beam

noise power is increased by only a factor of m (assuming the noise to

be uncorrelated from sensor to sensor). Dudgeon [11] explains that

the reason for studying the formation of beams from an array of sensors

is to use the signals received by the sensors in a phased manner so

as to preferentially detect signals coming from a particular direction.

In addition, by averaging over many sensors, the signal to noise ratio

(SNR) is increased to aid in the measurement of signal parameters till.

The delay-and-sum beamformer consists of computing the energy

in the beam for many directions of look by manipulating the delays.

Maxima of this energy as a function of k will correspond to the location

of the sources. Observe that this procedure requires computation of

the energy in the beam at every direction of look. For this reason,

this approach can be classified as a search procedure. The energy

6
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in the beam when steered in direction k is given by

e K_)A _ (1.2-2)
P() wA RRA

where R 4E(YY RI is the spatial correlation matrix of the sensor outputs

and A is the direction of look vector wth elements Ai - exp[j 2 k2 Z

where X is the signal wavelength. Assuming the noise to be spatially

white, the power in the beam when steered toward the source is

P(k)-m2a2 + 2 (1.2-3)
s n

2 2
where a and a denotes the power levels of the signal and noise.

The value of k which yields the beam power given in (1.2-3) is also

known as the Bartlett estimate of k. For this value of k, P(k) is

maximized.

The resolution of this approach is determined essentially by the

beam pattern of the array of sensors. A typical beam pattern for

a delay - and - am beamformer is shown in Fig. 1.3. Using this classi-

cal method, increased bearing estimation accuracy can only be obtained

by increasing the aperture of the array. This solution is of limited

utility as it means increasing the physical size of the array.

Don H. Johnson [101 observed that a source having a well defined bear-

ing appears to be coming from a dominant but diffused direction as vell

as from false directions covresponding to sidelobes. The sidelobes

are due to equal weighting assumed for each sensor output. This

approach was shown to be incapable of resolving bearings spaced more

8
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closely than the Rayleigh limit regardless of SNR [12]. This minium

source separation below which sources cannot be resolved increases as

the magnitude of the coherence between the sources increases.

Adaptive Beamforming

A way to alter the performance of the beamformer is to weight the

sensor signals individually before suming them as shown in Figure 1.4.

To achieve higher resolution modern spectral analysis algorithms are

used which determine the weights by utilizing the data measured at

the sensors. For this reason such systems are referred to as adaptive

beamformers. The problem of determining the sensor weights so that the

beam pattern has some desired characteristic is the same as designing

a good data window for spectral estimation, or designing a prototype

low-pass filter for use in a digital filter bank fIll. The sensor

weights can be adjusted to maximize the SN. This is analogous to

designing a Wiener filter given the spectral estimates of the signal

spectrum and noise spectrum (11). J. P.Burg (131 notices that this

filter will have a frequency response which passes those parts of the

spectrum where the SNR is high and rejects those parts where the SNR

is poor. This adaptive approach performs essentially the same as the

delay-and-sum beamformar when the source angle separation is less than

the beamridth. Although this approach has better resolution capabilities

than the conventional Fourier transform, it is still considered poor.

Spectral Estimation

The propagating waves are assumed to generate a homogeneous random

field (i.e., a field that is space stationary). In this case a

10
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spectral representation for the field exists, similar to that for

stationary random processes, which consists of a superposition of

traveling waves (14]. This, in effect, explains the equivalence

between the problem of determining the bearing of a radiating

source with an array of sensors and the problem of estimating the

spectrum of a signal. D. Johnson gives an excellent review of this

equivalence [10].

Linear prediction techniques can also be applied to the direction

of arrival (DOA) estimation. A tutorial review of linear prediction

is given by J. Makhoul [15]. Ulrych and Clayton [16] as well as Tufts

and Kumaresan (17] have applied the forward-backward linear prediction

method to the narrowband linear array case. Among the most well known

high resolution spectral estimation methods are Capon's maximum likeli-

hood, Burg's maxlu- entropy and the linear predictive method. We

shall give a brief discussion of these three techniques as applied to

DOA estimation.

Capon's maximm likelihood method does not make use of the

standard MLE. Instead, a constrained optimization problem is solved.

The direction of look A is found which yields the mini-m beam

energy P(k) given in (1.2-2) subject the the constraint AE = 1, where

I represents an ideal plane wave corresponding to the direction of look.

This constraint fixes the processing gain to I for each direction of

look. Minimizing the beam energy tends to reduce the contributions

to this energy from sources and noise not propagating in the direction of

12



look (101. For this reason S. R. Degraaf and D. H. Johnson

called this approach minimum energy adaptive beamforming. Using

the Lagrangian approach, the solution of the above stated optimiza-

tion problem is given by
-'L
R -E (1.2-4)

where R is the spatial correlation matrix of the data vector Y

which was defined previously. This approach is classified as a

search procedure since the vector A has to be computed for each

direction of look. When the noise is assumed to be white and the

beam is steered toward the source, the beam power estimate is

2 n2
P(k) - a + n

where a2 and a2 denote the power levels of the signal and noise.s n1

Burg (18] suggested using the principal of maximam entropy to

estimate the DOA's. For a given direction of look, the entropy

u - J tn PW) dk (1.2-5)

of the power spectrum P(k) is obtained. Burg has shown that

maximizing the entropy is equivalent to choosing the "most likely"

spectrum. For the case of an equally spaced linear array, the

maximum entropy solution was shown to be equivalent to the linear

prediction solution.

13



S. W. Lang and J. H. Mcllelan (191, among others, applied

linear prediction (LP) to array processing problems. The idea is

to estimate the output of the Ith sensor as a linear combination of the

other sensor outputs

yj(t)- uiyi (,e). (1.2-6)

- i L

The linear predictive coefficients are obtained by again solving a

constrained optimization problem, the constraint being u, - L. Once

these coefficients are known, the power spectrum P(k) is obtained.

The power spectrum P(k) is computed for different directions of look

and the source bearings correspond to the maximas. Observe that

this is also a search procedure. An open question in the LP approach

is the choice of Z, i.e. the choice of the sample to be predicted by

the other samples.

The three methods described above are capable of resolving closely

spaced source bearings if the SNR is large enough. Using incoherent

sources and a linear array containing 10 sensors, it was shown that

the linear prediction processing algorithm is uniformly the most

capable of resolving closely-spaced signals (121. Thus, these methods

have better resolution capabilities than the beamformers presented

earlier. However, one major drawback of these high resolution pro-

cedures is they are computationally very complex due to their

search nature. Finally it should be noted that spectral estimation

methods are not applicable to the DOA estimation

14



problem when the source signals are correlated because the wave-

field generated by correlated signals is not homogeneous.

Sinal-Subspace Processing

In recent years, there has been a great deal of interest in

spectral estimation procedures based on an eigenvalue-eigenvector de-

composition of the spatial correlation matrix. In the mathematical

literature, this is known as principal component analysis. R. Kuaaresan

[201 points out that principal component analysis involves linearly trans-

forming the data along the first few principal eigenvectors of the

covariance matrix of the data [21]. The original work in this area

is due to H. Hotelling [22]. C. R. Rao [23] showed that several

problems in multivariate analysis have solutions based on calculating

the first few eigenvectors of a correlation matrix. In array pro-

cessing, interest stems from the fact that there are relations between

the eigenvectors of the spatial correlation matrix and the directions

of arrival. Pisaranko (24] was the first to realize the important prop-

erties of the eigenvectors of the correlation matrix. This idea was

then vigorously developed by Cantoni, and Godora [25], Owuley (26],

Liggett [27], Reddi (281, Schmidt [29] and Bienvenu [30].

All these signal-subepace approaches assume the background noise to

be independent from sensor to sensor and the spstial coherence matrix

to be the identity matrix. It should be noted that when the noise

is nonwhite but has known covariance, the problem can still be handled

through prewhitening. A Paulraj and T. Kailath (31] proposed a

15



solution to the unknown noise covariance problem when the noise

field is invariant under different array positions (i.e., the noise

covariance matrix is unchanged). Situations where this assumption is

valid are not uncomon in sonar applications.

We nov present the building block of a standard eigenstructure

algorithm. Using (1.2-1), the spatial covariance matrix can be

written as

R- EY] - ASA n + a21 (1.2-7)

where S is the covariance matrix of the signals s(t), i.e.

s = E(s(t) ,H

o2 is an unknown constant representing the noise power at each sensor,
and E(.) denotes expectation. Let ( 1 > X >"... > X I and

(e 1 , •2a ... , } be the eigenvalues and the corresponding eigenvectors

of I. One can show that if S is nonsingular (i.e. thesource signals are

not coherent), and if the number of sources d is less than the number of

sensors a, then

1) The minimm eigenvalue of R is a2 with multiplicity (m-d), i.e.

Xd+1 -d+2 a a 2  (1.2-8)

2) The eigenvectors corresponding to the minimal eigenvalues

are orthogonal to the coluns of the matrix A or the signal

direction vectors. In particular,

16



,ee, .l'_, k(1.2-9)

where the symbol i denotes orthogonality.

The key steps of this algorithm are as follows. First determine

the number of sources d using (1.2-8). Next find the noise subspace

as the space of the eigenvectors corresponding to the smallest

eigenvalue of K. Finally, the desired direction vectors (hence the

DOA's) are found by searching the array manifold to locate those

vectors that are orthogonal to this noise subspace (29]. Like earlier

approaches, these signal-subspace techniques are also search procedures.

The above algorithm assumes that we have perfectly known eigen-

vectors and eigenvalues. In practice, however, R has to be estimated

from the array data vector Y. Due to errors in estimating R from

finite samples and because of finite precision arithmetic, the

eigenvalues and eigenvectors will be perturbed from their true values.

There is, therefore, zero probability that the smallest eigenvalue

of R will have multiplicity (m-d), i.e. the small eigenvalues will all

be different with probability one. A more sophisticated approach, based

on statistical considerations, is needed to determine the underlying

multiplicity [32]. The problem of estimating the number of sources

present is an on going one. Many solutions have been proposed but

none is fool proof. Liggett (27] was the firsr researcher to use

oigenvalues of the estimated R to determine the number of signal sources.

He fitted a multivariate signal model to the observed data. Bartlett

(331 and Lawley (34] developed a procedure based on a nested sequence

17



of hypothesis tests. For each test the likelihood ratio statistic

is computed and compared to a threshold. The hypothesis accepted

is the first one for which the threshold is crossed. The problem

with this method is the subjective judgment required for deciding on

the threshold levels [321. One of the most celebrated approaches

to this problem is the Aikake information theoretic criteria (AIC).

The advantage of this approach is that no objective judgment is

required in the decision process (351. The minimum description

length (MDL) is another approach that does not require objective

judgment. Recently, a new approach based on the AIC and MDL has been

proposed by M. Wax and T. Kailath (321. They view the problem as a

model selection problem and then apply the AIC or MDL for model

selection.

To close this subsection we present one of the most promising

subspace approaches, called Multiple Signal Classification (MUSIC),

which was proposed by Schmidt (361. MUSIC can be shown to provide

asymptotically unbiased estimates of

1) number of incident wavefronts present

2) directions of arrival

3) strengths and cross correlations among the incident waveforms.

4) noise/interference strength

5) polarizations

Given the a x a spatial covariance matrix R of the data vector Y,

Schmidt showed that the eigenvectors associated with the minimum

18



eigenvalues of I are orthogonal to the space spanned by the columns

of A, i.e. the signal direction vectors. Thus, Schmidt proposed

searching in the a(6) continuum for the values of a(e) which will

maximize the expression

P(e) a 1 (1.2-10)_(G)ES a(6)

where EN is defined to be the a x (m-d) matrix whose colums are the

(m-d) noise eigenvectors. These new eigenvectors are the eigenvectors

corresponding to the (m-d) smallest eigenvalues. Once the signal direction

vectors are known, the DOA's can then be obtained. Note that MUSIC

necessitates searching. Schmidt generalized this approach to include

the added complexity of signal polarization.

Schmidt compared MUSIC with the conventional beamformer, Capon's

maximm likelihood and Burg's maxim entropy approaches (See Fig. 1.5).

MUSIC was found to have superior bias, error variance and resolution

performance. However, like all the earlier search methods, this super-

resolution approach is very inefficient computationally.

Nonsearch Procedures

Currently, nonsearch procedures are being developed [37], [381,

(391. These algorithms seem to have important advantages over search

procedures. Among these advantages are (371:

1) They are computationally less complex because a search procedure

is not needed.

2) These algorithms do not require knowledge of element characteristics

(i.e. directional pattern, gain/phase response).

19



CONVENTIONAL

a SEAMFORMING

ACTUAL AOAs

"o ,3°  NO ABILITY TO
RESOLVE TWO

30 SIGNALS

* SNR 24 dO ,
SNR a 10do

AUA

* MAX LIKELIHO00

a
SECOND

do aPREDOMINANT
PEAK IS WRONG
(AN AMBIGUITY)

I I

'ernso -we -a A& a to. 'an
4.1 MAX ENTROPYa

SECOND
SPREDOMINANT

PEAK EXHIBITS
Is. AOA SIAS

I ERROR

.M lo.-m A&A n Me M

'TO 57 dol
39,

NO SIAS ERROR
OR AMBIGUITY

le. CONFUSION

. Ii ." -U AbA "a I" we

Fig. 1.5 Exagple of Azi.muth Only Direction Finrditg Performanc*.

(From (291).

20



3) They do not require a calibration of the array. This

completely eliminates need for storage of the array manifold

which can be very large for multidimensional problems.

This dissertation concerns itself with these newly developed

nonsearch procedures. Although the techniques are developed for

narrowband signals, wideband signals can also be handled by decompos-

ing them into narrowband signal sets using comb filters. A discussion

of DOA estimation of wideband sources is given by H. Wang and M. Kaveh

[401.

1.3 Research

Nonsearch methods for solving the problem of direction finding

with a sensor array in a multiple source environment are the main

topic of this research

Chapter 2 is devoted to formulating a generalized approach for

these nonsearch procedures. The generalized approach consists of

applying an operator to the received signals in order to form a

matrix pencil M-MN. The rank reducing values of A are shown to con-

tain the information needed to estimate the angles of arrival. The

pencil theorem proposed in this chapter establishes the relationship

between the rank reducing values of X and the functional form f(Oi)

generated by the operators applied to the measurements. When the

matrices M and N are square, the rank reducing values of X are the

generalized eigenvelues of the pencil M-XN. Two methods are proposed
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to compute these values of X when M and N are nonsquare.

Several different nonsearch procedures are special cases of the

generalized approach. These methods differ primarily depending upon

the operator used. In chapter 3 two different techniques are pre-

sented and formulated in terms of the Seneralized framework. The

first, ESPRIT, makes use of a phase delay operator while the second

makes use of a summation operator.

In chapter 4 the moving window operator is analyzed in detail.

This operator is also formulated within the generalized framework

and is shown to hold for coherent sources. At first the moving

window is presented for the case of deterministic signals. In

section 4.1-2 the moving window is shown to be applicable to the

zero mean random signal case. In section 4.2 the moving window oper-

ator is applied to a rectangular planar array. As before, the rank

reducing numbers of the matrix pencil M-XN contain the information

needed to locate the sources. Sections 4.3 and 4.4 present Prony's

and Pisarenko's algorithms. Their relationship to the moving window

is developed. In section 4.5 computer simulation results are pre-

sented. The estimation accuracy of the Prony, Pisarenko, and moving

window methods are evaluated in terms of bias and variance based on

several Monte Carlo runs. The moving window is also compared to ESPRIT.

Finally, a sumry and suggestions for future work are given

in chapter 5.
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CHAP=E 2

TEE GENERALIZED APPROACH

As discussed in the introduction, several high resolution

spatial processing algorithms such as the maximim likelihood method,

maxinm entropy method, linear predictive method, and MUSIC have been

proposed for estimating the directions of arrival of incoming signals.

These techniques are essentially search procedures and, because of

that, are computationally very complex. Nonsearch procedures have

recently been proposed to alleviate this computational burden.

In this chapter a generalized formuation is proposed for these

newly developed techniques. The pencil theorem which forms the

foundation of this work is developed in section 2.1. This theorem

states that the rank reducing values of a certain matrix pencil con-

tain the information needed to estimate the angular location of the

d sources. Section 2.1 discusses the procedures one can use to

obtain these rank reducing numbers.

2.1 The Pencil Theorem-

The basic problem under consideration is that of estimating the

angular location of d sources given measurements from an array of m

sensors. The measuremnts are modeled by a linear combination of d

exponentials whoee exponents J,1 ,i a 1.2,..., d contain the informa-

tion about the angular location of the sources. The generalized

approach is based on the concept of a matrix pencil which is defined

as follows (41). Let M and V be two k x t matrices. Also, denote
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the space of complex numbers by . The set of all matrices of the

form m - XN with X.* is said to be a pencil.

The matrices H and N are required to have the decompositions:

M - EF and N - EDF (2.1-1)

where E is a k x d matrix (k > d), F is a d x L matrix (Z > d),

D is a d x d diagonal matrix, and E. D, and F are all of rank d.

In addition, the ii= entry of the diagonal matrix D is required to

be of the form

d ii a f () - f g(e )j; 1. - 1,2,...d (2.1-2)

where e s the angular location of the i'h source. The matrices

M and N and the function f(.) are determined by the operator T{-}

applied to the signals received at the m sensors. In general, different

approaches may employ different operators T}.

The following theorem establishes the relationship between the

values of A for which the rank of the pencil H - XN decreases by I

and the functions f (.) which contain the directions of arrival (DOA)

information.

Pencil Theorem:

Let H - AN be a matrix pencil where M and N have the decompositions

M - El and N - OF

as cited above. Then. the values of X which decrease the rank of the

pencil M - XN by 1 are given by
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-1 -1... d
Ai - {f(* )) -u {ffg(el)1}- ; i.1,...,d.

Proof:

Given the matrix pencil M - AN, it followe that

M - AN - EF - XEDF - E(I - XD)F (2.1-3)

where the ii t h entry of the diagonal matrix (I-D) is given by

[(I - XD)] -±± I - .f(4i

If X - {f(i )} I then the :ih column of (I - XD) becomes zero. The rank

of (I - AD), denoted by r(I - AD], is thus reduced by I to (d-1). In

general

r(M-AN] - r(E(I - AD)Fj - min {r[E], r[I- AD], r(F]}.

However, by assumption

r[E] - r[F] - d.

Therefore, the rank of the pencil H - ,N is decreased by 1 when

Ai U (f(4 )} ; i - 1,2,...d. (2.1-4)

2.2 Evaluation of the Rank Reducing Numbers

The procedure used to compute the A i's is now discussed. It is

shown to depend on whether X and N are square or non-square matrices.

Denote the determinant of a matrix M by det(M), and the space of

complex numbers by $. In case M and N are SQUARE matrices, the
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generalized eigenvalues (G.E.) of the pencil M - AN are defined to

be all the elements . € of the set X(M,N) defined by

X(,) - A.X et )det (M-A i N) - 0.

When the G.E.'s are distinct, the rank of M - AN is reduced by I whenever

X is set equal to one of the G.E.'s. Therefore, chese G.E.'s are the

rank reducing numbers of the square matrix pencil M - AN.

If M and N happen to be NONSQUARE matrices, then either one of

two approaches can be used to determine the rank-reducing numbers Xi:

1. The problem can always be reduced to a generalized eigenvalue problem

by prem-ltiplying the rectangular matrix pencil M - AN by MR.

Note that (-) denotes the Hermitian operator. We obtain

S (M- AN). - N.. (2.2-1)

Observe that IA - %A is a square matrix pencil. It follows

from (2.1-1) that

MAM - ME - (EF) 1 (EPF) - X(EF)H(EDF)

- FK - AM=EED

-FEE (I - AD)F. (2.2-2)

Note in the above equation that we still have the decomposition

required by the pencil theorem. The matrices F7 EHR and F are both

of rank d. Because (I-AD)arises inboth (2.1-3) and (2.2-2), the
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generalized eigenvalues of the matrix pencil A - are identical

:o chose obtained in (2.1-4) for the matrix pencil M-N when K and N

are square.

2. A Graman approach can also be used to deter-mine the Xi's. Denote

th
the i-'- column of M - XU by (M - XN) i . Also, define the inner product

of two vectors K and Y by

<X. Y > - . (2.2-3)

Th..is approach consists of checkl_; the dependence/inde.endence of the

coluns of the =atriz pencil M - TN. To this end a Gram matrix G
th

whose ii- entry is given by

G - <CM - N) i , (M - XN) >

is formed. Conputing the deter=inanr of G results in a polynomial P()

whose non-zero zeros are the rank-reducing numbers of M - XN.

Having shown how the rank reducing numbers of a matrix pencil can

be determined, we now show that different nonsearch procedures for DOA

estimation can be formulatcd within this generalized framework.
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CHAPTE 3

VARIOUS OPERATORS FOR USE IN

THE GENERALIZED APPROACH

The rank reducing numbers of the matrix pencil M - )N will be

functions of the angular locations of the d sources provided the

th-L diagonal element of the matrix D has the functional form given

by (2.1-2). This functional form, however, is not dictated by the

location of the sources but by the operator used to process the data

received at the sensors. Different methods formulated within the

framework of the generalized approach use different oprators.

In this chapter two direction of arrival estimation techniques

are presented. The first, ESPRIT, which makes use of a delay oper-

ator, is discussed in section 3.1. The second approach, presented

in section 3.2, is a generalization of a system identification scheme

originally proposed by Jain (42]. This scheme uses a summation oper-

ator.

3.1 Phase Delay Operator (ESPRIT)

ESPRIT (37] is a subspace approach to direction of arrival estima-

tion which employs a planar array of arbitrary geometry composed of m

matched sensor doublets whose elements are translationally separated

by a known constant displacement vector & (See Fig. 3.1). In terms

of the generalized formulation, it will be shown that ESPRIT uses a

phase delay operator which results in the function

2 8 . (3.1-1)
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Fig. 3.1 Hu1tiple Source, DOA Estimation Using ESPRIT.

(From [371)
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The array of sensors is conveniently described as being comprised of

two subarrays X and Y, identical in every aspect although physically

displaced from each other by a known displacement vector A. Assume

there ar d narrowband stationary sources located at azimuthal angles

ei, i-1,2,...d, which are impinging on the array as planar wavefronts

and emitting signals whose complex envelopes are denoted by Sk(t), k=

1, 2,...,d. To be able to solve for the DOA's d has to be less than

th
m. The signal received by the it- sensor is the superposition of d

impinging wavefronts plus zero-mean additive noise. Define a±(ek) to

th
be the relative response of the 1- sensor at either subarray to the

th
ic source, w0 to be the center frequency of each of the spatial

sources, c to be the speed of propagation of the plane waves, and n (t)
x i

and n (t) to be the additive noise at the elements in the i-t_ doub-
Yth

let. Then the output of the iz- sensor can be expressed as,

d
Z .(te) I sk(t) a '(ek) + n (t)

kinI i

d Jok
yi(t,) = S (t)ai(ek)e + n (t)

£ k-I Y

where e. (el, e8,...,e d)

and () - T2 A sin ek .  (3.1-2)

Let

'T (t) = (x1 (t,.), x2 (te),..., xM(te)]

.IT (t) - i(te), 72 (toet...,9 y (t qt)
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be sizmltaneously sampled data vectors of both subarrays. Similarly.

define

y7 Y, Y ym

Define A to be the m x d direction matrix whose colums are the signal

direction vectors for the d vavefronts defined by

4 (Old - (al(ek).a2 ek)s.. a .)]

Also, define 0 to be the diagonal matrix of the phase delays between

the doublet sensors given by

- diag (1 a J02  *od 1  (3.1-.3)

It follows that

-A S (t) + n (t)

1(t) -A 0 S(t) + na (t). (3.1-4)

As a first step in this algorithm the minisnim description length

(NDL) criterion [32] is used to estimate d, the number of sources.

Using both this estimate and the assumption that the noise is white

and uncorrelated from sensor to sensor, the max'-,- likelihood estimate

of the noise power is obtained. The matrix
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pencil C-AB is then formed where C is the autocorrelation of the data

received by subarray X and B is the cross-correlation matrix between

the data received at subarrays I and Y. Note that C and B are

square correlation matrices. Assuming that S(t), n x(t) and n 7(t) are

statistically independent, then

3H

C - E[_E(t) 'I (t)]

- E((A S(t) + RX(t))(A S (t) + n (t))H]

- A S A + R (0) 3.1-5)ntl

where

S - E[S(t) S (t)] (3.1-6)

is the d x d correlation matrix of the signals s(t),

Rn n (0) - E[n(t) nX (t)]

is the d x d correlation matrix of the noise and E(-) denotes the

expected value.

Let

E = AS and F - k".

Using these expressions C can be rewritten as

C ET + R (0) (3.1-7)
Sl 11

Define
a -10 1l8[-~ -JO2 -Jod]

D g , e ....,e • (3.1-8)
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The matrix B can be expressed as

B E()_(t )]

-EE(AS(t) +n (t))(AOS(t) + n (t)) H
-y

-ASOA" + R (0)

_ = ~EDF + Rn  (0) .I9

where

Rn (0) - E[n (t) n(t)].--- -f

Since the noise components are assumed to be white and uncorrelated from

sensor to sensor, it follows that

R n n( )  a m 21 and Rn n (0) 0.

Therefore,

C - XBI E(I - XD)F + a 21. (3.1-10)

Let 2 z
M - (C - a 2) E E(X(t)X(t)] - 1 I - EF

and
H ~ ~)St]= (3.,1-li)

N - B - E[X(t)Y R(0)1- EWF.

Subtraction of a2 I from both sides of (3.1-10) then yields

(C - 1 2) - XB - E(I-AD) F a H - XN. (3.1-12)
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Observe that the matrix pencil formed in this manner has the decom-

position required by the generalized formulation.

Recall that the m x d matrix E is the product of the direction

matrix A and the signal covariance matrix S. The matrix E is required

to be of full rank. This, in turn, requires that the matrices A and

Sboth be of rank d. The m x d matrix A is of rank d as long as the

signal angles of arrival are distinct. However, the rank of S will

be less than d when the signals are coherent. This explains why

ESPRIT fails in the case of coherent signals. The matrix F is of full

rank, as required, since it is the matrix A . The diagonal matrix

D given in (3.1-8) is also of rank d.

As mentioned in (3.1-I) the phase delay operator of ESPRIT results

in

From the pencil theorem it follows that the G.E.'s of M-XN are related

to f(Oi) by

-i { f(%i)} - C • ; i - 1. .,d.

Once the G.E.'s are known, the DOA's can be obtained from (3.1-2) using

the relation

ei - arcsin {-J c R, Ln.

Note that the argument of arcsin is real since Zn X is purely imaginary.

It can be concluded that this nonsearch procedure is one application

of the generalized approach. The operator used by ESPRIT is the phase
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delay operator which results in the functional relationship given

in (3.1-1). ESPRIT has all the advantages discussed in the intro-

duction, i.e., speed, storage, and indifference to calibration.

3.2 Sumation Operator

In this section we generalize a system identification scheme first

proposed by V. K. Jain [421. In this generalization a linear array

composed of m identical omnidirectional sensors with uniform spacing

A is used to estimate the direction of arrival of far field point

sources. Assume there are d < m/2 narrowband deterministic sources

with spectra centered at w0 and located far enough from the array

such that their wavefronts impinging cn the array are planar. ek is

the direction of arrival of the kth source and ai(t) is the additive noise

at the ith sensor. Additive noise is present at all m sensors. The signal

received at the ith sensor is expressed as

d J 1- AU(-O)sin ky (t~e) - a s(t) e + n (t); i-1,2,...,.a
S- k 1i~ ek-I

As before, sk(t) denotes the complex envelope of the signal emitted

th
by the k= source.

thFor a reason which will become apparent later the i- measurement

yi(t,_) is weighted by a known decaying exponential e-b(i-1) .  The

weighted signal is given by

Si (t,S) -e-bi-1) yi(t,e.)

d b ) -- (i-l) sine

k 1 sk(t) *-a-'' C k + a-b(i-1) ni(t).
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Let

k " (k) - "p [-b + J A sinek] (3.2-1)

Hence, w:L(t,.) can be expressed as

i(te) = dY Sk(t)[g(ek)] (-t + e-b(i-1) n Cc).

Assuming the signals to be deterministic and the noise to be zero

meanaxi(t,e) is defined as

d
xi(t,.) - E[ (,e)] t) [g(ek)](-l) (3.2-2)

k=1

Define x1 (ite) as follows

xl(i,c,) - x1(t~e) ; i-I,...,. (3.2-3)

A vector X_. whose A entry is given by x (i,t,.), is then formed

as indicated below (See Fig.3.2),

1 ' -{Xl(l't~e) I z(tve_),..., xl(,t.)} • (3.2-4)

As in previous techniques the number of siznals, d, is estimated.

Having an estimate d, a set of (d+1) vectors X , p - I,2,...d+l is

created by operating successively (p-I) times on X1 with the summation

operator, (). For example, the elements of tse vector 12 or
Z=3

x2(j,t,O), j - 1,2,...a are obtained as shown below:

x2(j.t.O) - ! x( U, t8 ). (3.2-5)
t-:j
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Using (3.2-2) and (3.2-3), (3.2-5) can be rewritten as

a d d sk(t) a
x 2 (j,t. _) = sk(e)[g(ek)]( ' = e

L=j kul kimi k) IJ

d sk(t) z i-)- I (o-- 1 7 ([O.1(ok )] )
k-I g5 k zO 1O

d sk(t) I - (e( J ) I- g(ek)j
k 1 1 8( sk I" - S( k )

d (t) d st) (a
- k gO 1(k](J-1) k gs)=k= I t'''s(ek) (l - k= Igt-(Gk)

Similarly, the elements of the vector 13 or x3(Jt, ) J - 1,2,....m

are obtained by using the summation operator on 12 .

x3 (j,t,e _) = 3 x 2 (~t_)
inj

m d skt.t) ((k) - a d m= k -I - 1(ek) ] X I jk=11(I e)

i-j k-I "(6k)

d s k (t)) d S k (t)]I Y [2(e()] - ---- G[ d

k-L (L-g(ek) k-l [1-g()] 20

d sk(t)
- 'sk ) (a-J+I) We k ) M.

This procedure continues until the vector xd+l is obtained. Define
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C (j) (m-+I)
=wj

C 2 (j) - C1(tM (3.2-6)

m

Te elemeucs of dt or Xd+I(itt;.6), are given by

xd+Q(it.e) I x d(Z,t,e). (3.2-7)
z-j

Using (3.2-6) expression (3.2-7) becomes

d Sk(t)

Xd+I~i~t. - k1I (1-g(e )1 dSOe01

d sk(t) * d Sk(t)
1 (g9k)] - . k (J+ 1(o ) IM" I EItG d [k-I~ "d-1 (m-j+1) [~kl

k 1 [1sk)] 0 k-L [1-g(e k) d- I

d ~ k :
- d cs1(0) W901 M

k-1 [1-g(e 0 1d '

d sk(t) ]

d ,Ise) CdS k (t)

-k4 [ I gto k)) ] -0 [,0
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th t
In general. the J-7- element of the q- vector has the following form

d 5 (C)- J1
x(j't.-t) - k 186k)q1C(ek8 )] k- h(josm,O k) (g(ek)]

(3.2-8)

where h~s.hm.Gk ) is a function containing all the terms multiplying

[g(a i])M Assume that the weights are chosen such that I5(ek )III <<1.

Note that

Ig k .xp(-bm) - e

Therefore,

b L n

mm

Assuming b is chosen such that the terms involving [g~ek] are negligible

with respect to the first term in the right side of (3.2-8), x q(j .t,8)

q - 1.2,...,d+l and j - 1*2*....put can be approximated as follows:

d W(t

q k-I 1gO0q- k

As a parenthetical note, it is pointed out that the above result is

obtained with equality for a hypothetical array containing an infinite

number of sensors. Then the upper limit in the sumation operator is

- and the term including Eg(e k)Im do not appear. However, even in the

case m£ - , this technique requires the measuremnts to be weighted so

that terus involving the summation operator converge-

Using the vectors 1I1-,2,..., d+19 the matrix pencil M-XN is formed

where the rectangular matrices 14 and N are defined to be
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11 2" 4 N 12 4- -Xd . (3.2-1O)

Let

g(el)  SO 2 )  g .. s(8d )

s 2(e) 2(e2) ... g (3.2-)

Em

g'1 (e 1 ) m' 1 (e2) .. M-(ed)

anddI

Sl~t)(1-9el))d-1I
s 2(t) l 2(t) / l-g(e2) .... 8 2(t)/[l-S(.t)] ]d-1 ( .- 2

(3.2-12)
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Similarly, defin. the diagonal matrix

D ig( 1 9 1 1 1.]
-din [ 1_&(-) I-S(e 2) 1.-(ed)

It follows that N can be decomposed as

N -EDF. (3.2-14)

Using the decompositions (3.2-13) and (3.2-14) it is seen that the

matrix pencil generated by this approach takes the required form

given in (2.1-3). Provided the directions of arrival are distinct, E

and F are of full rank. Consequently, the summation operator approach

generates a matrix pencil that satisfies the requirement3 of the pencil

theorem.

th
In the sumation operator approach the ii t h entry dii of the matrix D

is given by

d
ii 77j

In terms of the generalized formulation

1 1

f- _z(e ; i - 1,2,...,d.

The values of X which decrease the rank of the pencil M - AN by 1 are

given by (2.1-4) or

Xr - (e ) ; 1l2,...,d. (3.2-15)

Because the matrices H and N are not square in this approach, the

AX's can be obtained by computing the G.E.'s of the square matrix pencil
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given by (2.2-I). Alternatively, the Gram matrix approach can be

used to obtain these rank reducing numbers.

Jain's system identification scheme has been generalized to handle

the direction finding problem. It is shown that this method, like ESPRIT,

is an application of the generalized approach. This scheme makes use

of the summation operator. Being a nonsearch procedure, it has all the

advantages ESPRIT presents.

There is still another operator, the moving window operator, to be

discussed in greater detail in chapter four.
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APTER 4

THE MOVING WINDOW OPERATOR

Two operators, the phase delay operator and the summation opera-

tor, were presented in chapter three. Both methods were formulated in

terms of the generalized approach. Being monsearch procedures, these

methods possess the computational and storage advantages discussed earlier.

However, the ESPRIT method that makes use of a phase delay operator fails

for coherent sources. The summation operator, on the other hand, required

a weighting factor to approximately eliminate terms that would have pre-

vented the matrix decomposition required.

In this chapter another operator is presented. This operator, the

moving window, is formulated within the generalized framewvork and is

shown to hold for coherent sources. This approach provides asymptoti-

cally unbiased estimates of the angles of arrival. Section 4.1 intro-

duces the moving rectangular window for the case of deterministic sig-

nals. In subsection 4.1-1 the case of a singular signal covariance

matrix is analyzed. The rectangular moving window is then applied to

the zero-mean randou signal case in subsection 4.1-2. In section 4.2

the moving rectangular window is generalized to a rectangular planar

array. Sections 4.3 and 4.4 present two well known methods, Prony's

and Pisarenko's methods (42-461.. Their relationship to the moving rec-

tangular window is developed. A comparative performance based on com-

puter simulation of the three methods is given in section 4.5.

4.1 The Moving Rectangular Window

In this section a nonsearch procedure is presented for azimuth-only

44



DOA estimation of far field point sources. Consider a linear array

composed of a identical omnidirectional sensors with uniform sensor

spacing D. Assume there are d < m/2 narrovbaud deterministic

sources located at azimathal angles e1, i - 1,2,...,d, which are im-

pinging on the array as planar wavefronts and emitting signals whose

complex envelopes are denoted by s(t), k-L,2,...,d. The signal

th
received at the i.- sensor is the superposition of d impinging vavefronts

plus zero-man additive noise. Define a1(0 k) to be the relative response

th sesrt h th
of the i- sensor to the k source, 0 o be the center frequency of each

of the spatial sources, c to be the speed of propagation of the plane

waves, and ni(t) to be the additive noise of the th sensor. Then the

thsignal received at the i- sensor can be expressed as

d

yi, Sk (t) a(8k) + ni (t); i-1,2,...,m.

Let

- D sin 8 ; k-19,2,.. .,d. (4.1-1)

When using a linear array of omnidirectionil sensors, the relative res-

ponse (senser I being the reference sensor) of the ijh sensor to the

th
k= source is given by

JOk (i-1)

i2(k)  (4.1-2)

y (t ,e) can then be rewritten as

d

yi(A.)- ; k WexpUJ k} (i-l)]+n (c)
k- I

d W0.d (t) exp(J-- D sin 8k) (i-I)] + ai). (4.1-3)

kal ck
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The expected value of y (te) yields x1 (te.) given by

xi(t.e_) = yi(t..) ]

d
k 1 sk(t) a±(0k); i-1,2,...,m. (4.1-4)

Define the rectangular window to be
I. I<n< N

RN(n) = -o (4.1-5)
otherwise.

Given the number of sources d and the a averaged data points xi(t,8),

a set of (d+1) vectors X- is created where the components of X are
n~-In

the (m-d) values of the sequence

xi(cee).Rm d (i-n+1); n - 1,2,...,d +1

n < i < a + n - d - 1. (4.1-6)

In particular, (see Fig. 4.1)

x {x (t.9 x x (t,8)1

T {x2(t,e), x3(t,e),...,X 1(t,e))
* (4.1-7)

Xi (X d+l(t.-f), Xd+ 2 (t) ,xt,}

The matrix pencil M-AN is then formed where

t* r
M N- ... N X (4.1-8)
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Define the matrices

an( )  an (82) ... a n(0 d )

a(n8k l  a n+ l ( 2 ) .. and.l (d -

a+md-) 8 +(m-dl) .. an(dl ) (.-)

E A A, ' (4.1-1I)

Also, define the vector

TS (21s9, S2...,Sd).

It can be shown that the vector X can be expressed as

X - A S; n,,1,2,...,d+l. (4.1-12)

Observe from (4.1-2) that

an (9k ) - {a2(6k)} (n-1) .
{ejik(n-1)

It follows from the above observation that
An.At (h-I) =E(n-I).

4n - 14
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Consequently,

X A S - E(- S. (4.1-13)-n= r-

Define

J (0 1 S ( d - ) (O
s I  ale .... sec

2  se .... se
02 J(d')$ d

F-

sd  d e .d..I)d (4.1-14)

The matrix M can then be expressed as

M - EF (4.1-15)

where E and F are given by (4.1-10) and (4.1-14), respectively.

In a similar manner N can be expressed as

N - EOF. (4.1-16)

Using (4.1-15) and (4.1-16),the matrix pencil M-XN can be decom-

posed as

M - XN - E(I - XO)F. (4.1-17)

This decomposition satisfies the requirements of the pencil

theorem. As long as the directions of arrival of the signals are

distinct and the separation is less than half a wavelength, the

columns of E are linearly independent. Thus, the matrix E is of

rank d as required. By inspection, the matrix F is also of rank d.
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Hence, the values of X for which the rank of the matrix pencil M-AN

decreases by 1 are given by

-1 -oAk d kk ; k = 192,...,d. (4.1-18)

The values of A can be computed by means of a Graminan approach.

The rank reducing X's are the values of A for which the columns of

the matrix pencil M-AN become dependent. Define the inner product of

the vectors X and X by

<X , X > a _X H (4.1-19)

where (.) denotes the Hermitian operator. To check the dependence of

the set

{X ~ - AX :3 ** , - AX-X } (4.1-20)

construct the Graemian matrix

_ - Ax2 ,x 1 A> <X- _2,2 - X> .... <X - X2 , - XX >

_2 - AX3 ,X1 -AX_2> <_2-A 3 ,x 2 - X3> ... <1 2 - XE - AXd+l>

G- . . (4.1-21)

'I!-X ,X'A-AX2> "cXd-A 12X3> .. 'Id -AXdl IX -A'Xdl

A polynomial P(A) whose zeros are the rank reducing numbers can

be obtained from the equation

dot (G) - 0. (4.1-22)
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An alternative approach to the computation of the X is given

in section 2.2. It is shown that the rank reducing 's of M-XN are

also the generalized eigenvalues of the matrix pencil given by

Again, once the G.E.'s of (4.1-23) are known, (2.1-2) can be used

to compute the DOA's.

In summary, given N snapshots and the number of sources d, the

following algorithm is proposed. It is assumed that the N snap-

shots are taken at a rate sufficiently fast such that sk(t), k-1,2,...,d,

remain approximately constant over the N snapshots.

ALGOKITII4 1

Step 1: Given N snapshots, form the averaged data

N i(tD. (i 2); 1-1,2,. .. ,sm. (4.1-24)

Stop 2: Form the vectors X , i-12,..., d+1, in (4.1-7) by approximating

xi(to) with xi.tG).

Step 3: Form the matrices H and N vhose columns are given by X and

X +is i - 1,2,..., d, respectively.

Step a4: Form the matrices MHM and MHN.

Step 5: Compute the Generalized eigenvalues of
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These G.E.'s are known to be of the form
W 0

Xk Dp {in Di (4.1-25)

Step 6: Find the DOA'8 using the relation

- arcsin {j -EL X } ; k 1 1,2,...,d. (4.1-26)
k 0D k
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4.1-1. Sinaular Signal Covariance Matrix Case:

an important property of the moving window approach is that

the proposed algorithm does not fail if the source signal covariance

matrix becomes singular. Singularity of the covariance matrix may

be due to smart Jmmers using coherent signals, the presence

of maltipath phenomenon, etc. To verify this property consider,

once again, the matrix pencil

M-XN - E(I-X4)F

where E, * and F are given by (4.1-10), (4.1-11) and (4.1-14),

respectively. Note that the matrix E is of rank d as long as the

directions of arrival are distinct and the sensor separation is less

than VI2. The matrix F is also of rank d even in the presence of

thcoherent sources. The diagonal matrix (I-4), whose i- entry is

(1-Xe j i ), is of rank d provided A 0i e i ; i-l,2,...,d. Therefore

the requirements of the pencil theorem are satisfied even when the

signals are coherent. Because d rank reducing numbers exist, even in

the case of coherent sources, it follows that the moving window

approach is applicable even when the signal covariance matrix is

singular.

4.1-2 Zero-16an Bandon SLnals Case:

In the moving window approach presented in section II the sources

were assumed to be deterministic. Rad they been random with zero

Sean, xi(t.2); i-l,2,...,m would have been zero. The matrices M and

N in (4.1-8) would then be identially zero and would be of no use in

determining the DOA's. In this section it is shown that a modification
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of the moving vindov approach is applicable when the non-zero mean

signal assumption does not hold.

Assume d random narrowband stationary sources vith zero mean and

center frequency w0" Given the vectors Y; i - 1,2,..., d+I, where

T-1 {1(te" Y2 (t'e) ' ' ya-d~t'.-91

y {y(t,-), Y3(t,-),' ', Ym-d+1(t,j-)}

T

(F " d+I (t,_. Y d 2 _, YM-,9_

The inner produce < ., > is nov defined to be

< ~ EC 4>-E -Y 1. (4.1-27)-=k

Define the matrices

<Y' Y >  <Y-I Y> ... <YI Y>

IV2 11>  <K2' -2 >  q2- Id

M " (4.1-28)

<12' !I> <12' 12> '12' Id >

<13' 11> 4Y3 -12> 13 - d>

N . (4.1-29)

<- .,. , > <-Y ,, >... <y ., d>

• mmm mmm i a i H~t mnm l54



*e ... a

(4.1-30)

and

0 -dias [ e a

Also, define the vectors

S T - (si 1' ... d]

I- (aftl+ ...ta +(m-d-1)] (4.1-31)

it follows that iY can be expressed as

Using (4.1-32), the inner product <4, W> becomes

EEW Z-1)S + N )'(AO (k1)S + E k)].

Assume the zero mean noise components with variance a 2to be uncorrela-

ted from sensor to sensor and independent of the signals. Then
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sC*-1)AiAO (k X)S_ + (..d)o2 L k. (4.1-33)

Let I be defined as

0 1. .... 0

0 0 1 . . .0

* .0

Aasuu±-. rhe uoise power a2 to be known, the matrix pencil M-XN is

defined as

M-XN (M - (m-d)a 2 1) - X(N1 - (m-d)a 2 11 ).

Observe that the kk element of M is

ZIAa R(L-1) "a (k-1) S1 (4 ,.1-34)

whereas the kL h element of N is

, S U - AA ()S. (4.1-35)

Let us now get a closed form expOrssion for the expectation given

in (4.1-34). To obtain this result we Purfor" the matrix multiplica-

tions involved in (4.1-34).
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-JO1  ~ (m-d-1) 1

~. -J02  -J(U-d-1)02  oIJd

AHAm

-j a--od j (m-d-1)0 1  j (m-d-1)0

3-4-1

1- + --Ij(0142 -- I jd4)

* (a-d) .. I+~ e

i-I. i-I
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SH(I-I) A1 A 4(4- 1) S

s*8(m-d) Jk LO1+9*52a -J(-1)01  J(k-)O;Z (I +nd-1 0-I)
i-I

-1) 4 (i0 J(k-I)o d Jns- i(Od "0))

-J~ ~(-1) 2 J~(k-1)0 1 (1 + -- i j + *(...d) )O

*9 d~ k10 J" (1 + 7. d2 *

*9-J(L-)0 3 J(k-1)0 1  mnd-I J(0 1 -'b 3 )1 -J(L-1)0 3 J(k-1)102
35 1 (+ 7j e +9 s 3e

31I-) i-I- 32 (d-3)

r'-sd-i j(0 2 - 4 )i + * i~ 3  N~-IO .I 0  3
(1 + + .

* JP-IO J(k-1)0 I m-d-I J(O 1- Od' i -J(RL-)Od J(k-1)0 2+ S*e (10G+~ + )s 3 e e
dl i1 d 2

m-d-I -'0* k )O
(1 + 1 e )+...+ a 3 (n-sd) a

The above equation can be written in a much more compact form using

the following sustitutions. Let

F p +~ m *- ( p -0q )

pq i-1

Then

S"R 4 -1 ANA 4 (k-1)S

d d -j(,-140 j (k- 1) rn -sd-I j( -4q

q-1 p-1 q p
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d d * -j(-.)0 J(k-L)p

q0I p- q p  pq"

Let

S -E(ss 1.8 q q [[ p]

The expectacion given in (4.1-22) can finally be expressed as

E [1 (Z..j) AHAO (k-1)S1

d d - ( - l q e(-)p

- I S a q . (4.1-36)
q.Ip", pq pq
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To simplify further define the matrices
1 1 1

- e J$2 a Jed
U= J20)  •J2 2 eJ20 d

SJ (d-1)(O J (d-1)0 2  1 (d-l) d

j ~-1

and

S lt 12 F12 " " ld Fld

S1 1 F1  511 . S F

S2 1F2 1  S12F22 2dd

(4.1-37)~~V -

SdlFdl S d2Fd2 . . . SddFdd

The matrix M can then be decomposed as

M - uvuH . (4.1-38)

Similarly, the matrix N can be decomposed as

N - WOO .  (4.1-39)

Thus, as required by the pencil theorem, the matrix decomposition of

M-XN is given by

M-XN - UVUli -WO

- U- (I -X$H)URo (4.1-40)
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The matrices UV and 0 are of rank d as long as the directions of arrival

of the signals are distinct. Hence, the values of X for which the rank

of the matrix pencil M-AN decreases by 1 are given by

X, a a ; i a 1,2,..., d.

Note that the matrices UV and UH are of rank d even when the sources are

coherent. Therefore, as in the nonzero-mean signal case, the approach does

not fail in the presence of coherent sources.

The above choices for M and N are not unique. To demonstrate the

flexibility of the pencil theorem, a second choice is now considered.

Let

M*E= -1 E Y + Y Y R Y Y a(.1-41)

and

N1 -E1 Y Y + .YY + Y. R j-1,2,...,d+1. (4.1-42)

Let

1 k

kZ 0 otherwise.

Using (4.1-32), M1 and N1 become

M E[A SHH(J-i) A" + AS SH (j-1) A ..

... + A (d-1)S S RR(j-1) A + j,d+11 (4.1-44)

BZH(-1) (2) U J1
N. " E[A$P S SS A S ( )A+...

A *(d) H SHIH(J-)AH] o2 I(1_%,l] "  (4.1-45)
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Let

M -M1 I[1- 6 1dl (4.1-46)

and

N N 1  a2 [1 6J1-(4.1-47)

Define the matrices

S * ( e,(4.1-48)

T CS + +..+ (d-1) S (4.1-49)

[I( + 4 +.. .+ (DtIS.

and

Z (D(J-1) AH. (4.1-SO)

The matrix M can then be decomposed as

K - ATZ. (4.1-S1)

Similarly, N can be decomposed as

N = A OT Z. (4.1-52)

Consequently, as required by the pencil theorem, the matrix

pencil M-' .1 can be decomposed as

M - XN - A(I-XO)TZ .(4.1-53)

However, this approach fails when the sources are coherent since

the matrix TZ is reduced in rank for this case.
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4.1-3 Prefilterina

The moving window approach yields correct results in absence

of noise assuming sufficient numerical accuracy. Therefore, it is

reasonable to expect that, if the SHR in the data can be improved

by prefiltaring, then the performance of our approach would improve.

The question is, "Does prefiltering prevent application of the matrix

pencil approach?" In this section we apply a frequency selective fil-

ter at each channel (see Fig. 4.2) and show that the matrix pencil

decomposition is not disturbed.

Assume that a filter with impulse response h(t) is applied to

th
each channel. The filtered output of the i- channel is given by

T

ui(t, ) - 1T y(rO8 ) h(t-T)dt (4.1-54)

0

where [o,T] is the observation interval. Using the expression for

yi(r, 9), u (t, .) becomes
T

ui(t.e) =kJ sk(-,)a(k)h(t-T) dT
o0 k- I

+ n (T)h(t-T)d

- ri T() Sk(T)h(t-t) dr

k-IJ

+j n(t)h(t-)d. (4.1-55)
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Let
rT

Zk(t) u J sk('T)h(t-T)dT (4.-56)

and T

Uf(t) - J .m(T)h(t-T)dT . (4.1-57)

The expression for u1 (t,) can then be rewritten in terms of zkt)

and n (t) asut

d
uL(t..) - 51 z]t)a1(0k)+ U+ (t). (4.1-58)

Assumins the noise to be zero man and the signals to be deter-

ministic, the expected value of ui(t,) is given by

vi(t.e) - CCu (t._)]

d
k I z k nI i(ak) + U (0)

d
a z k(t)a(ak) + E[n (t)]. (4.1-59)

By using a rectangular vindow, a set of (d+I) vectors V1 is

created. In particular,

T , {v (t,e , v2(t,_ ..., Vd(t,@)}

T-. {v (t,e), v(t,6_),..., vd t.e)}

T (v (t.!). v (t.!) ... v (4.1.60)
-;+ (vd(t) vd+2(tG~*~vt8}
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The matrix pencil N-XN is formed where

-_2 d N V % z _ Vd+I (4.1-61)

Let

zT C((),..., d(t)]. (4.1-62)

The vector V can be expressed as

V -A (4.1-63)

where, as in (4.1-13), (4.1-10), (4.1-11),

U1-1)

Define the matr.x

J zj (d- )0 1

J1b2  j(d-1)0 2
22 (t) z2 (W)e z2 (t)

F-

z d(t)  z d(0)e -dd(t) a•~ -)

(4.1.64)

The matrices M and N can be expressed as

M iEF and N ECF (4.1-65)
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Thus, the matrix pencil H-MN can be decomposed as required by the

pencil theorem. Specifically,

M - N- EF - XE.F

- E (I - XO)F . (4.1-66)

The matrix decomposition is, therefore, preserved without altering

the diagonal matrix 0 when multichannel filtering is added to the

moving window approach. As before, the rank reducing numbers of the

matrix pencil M-AN will still contain the necessary information to

estimate the DOA's.

The purpose for using a frequency selective filter in each channel

is to improve the SUR in the entries of the matrices M and N. A simple

example is discussed next to illustrate the procedure. The power spectral

density P(w) of the noise is assumed to be constant up to some high cut-

off frequency w c such that

No/2 -c Wc
P(W) W (4.1-67)

Assume the desired signal with the largest bandwidth to have bandwidth

AB. Let P denote the average power of the kth desired signal. Suppose

now that the received signals are put thru a rectangular bandpads filter

with center frequency w0 and bandwidth AB. The ,.ignal-to-noise ratio at the

input of the filter is given by
d

Sk- (4.1-68)(SNRt) i N

0 C
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while the signal to noise ratio at the output of the filter is given by

d

(SNR)o a kal k (4.1-69)
0

Define the signal-to-noise ratio improvement factor to be

S(SNR 0  (4.1-70)

For the moving window operator and the signals posed in this example,

the SNR of the entries in the matrices M and N are increased by the

factor

C (4.1-71)

One can, therefore, improve the performance of the moving window

approach by prefiltering the signals. The filters introduced into

each channel do not disturb the matrix decomposition of M-XN as required

by the pencil theorem. The SNR is increased in the entries of H and N

and one can expect more accurate estimates of the DOA's.
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4.2 Generalization to a Rectangular Planar Array

The scheme proposed in section 4.1 also lends itself to a rectangular

planar array of sensors with uniform spacings d x , dy in the X, Y direc-

tions respectively (See Fig. 4.3).

The angular locations of d sources are again to be estimated. These

estimates are to be obtained from measurements collected at the sensors

of a rectangular planar array. Assum this rectangular planar array

to have p sensors in the X direction and q sensors in the Y direction.

Observe that one can think of this array as being comprised of either

p columns of length q or q rows of length p. In this section we view

the array as being composed of q rows of length p. To be able to

locate d sources for this case, q has to be greater than or equal to

(d+1) while p must be greater than or equal to d. Define i and i
-X -I

to be the unit vectors along the X and T axes. The position of the
C th

mr-- sensors is given by

Z - (-.)d i + (n-1)di. (4.2-1)

Let -kr be the direction of propagation for the r- signal where

k - coo 8 ix + sin r i . (4.2-2)-r r-X y

th
The signal received at the rn. - sensor can therefore be expressed as

d 2n
ymn(t,6) - r s(t) exp 7 ZM - k I) + n,t); (4.2-3)

ruL

where Z k k denotes the inner product of the two vectors Z and k
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and n _(t) denotes the additive noise at the en--- sensor. Using

(4.2-1) and (4.2-2), the inner product Z n kr results in

Z . k - ((a-l)d L + (n-l)d i ].Coo 8 i + sin e 1
Oen T-x x y-Vr-x r -7

- (a-1)d cos 8r + (n-)d sin er. (4.2-4)
x r y r

Inserting (4.2-4) into the expression for y.(t,6_), we obtain

d

y , s(t) 2f (Y (f-1)d cos e I ep [j (n-i)d n 8]

+r f mn(t). (4.2-5)

For exmple, the signals at the sensors in the first row of the array

are given by

d
yll = r" sr(t) + ni1(t)

r-I

d 2w

Y21 a 1 r exp [j 7 dx cos 6r I + n21(t)

din r21r(Yp- d a sr(t) exp [j 7 (p-1) d cos e ] + n (t).

r-1 x r p1

Assuming the signals to be deterministic and the noise to be zero mean,

then

x mn (t)-E~y mn(tj)]

d 27r T4
st) exd x (a-I) Cos 1 exp[ d (n-l)sin e 1. (4.2-6)

r-I r (t) XPL I y r
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TT

Using these averaged measurements, q vectors are formed as given by

X M (x12(cei, x2 2 C,_6),..., xp2 (t,e)

(4.2-7)

xT axq(t,.6). x x (t,_)l.
q iq - 2qpq

A matrix pencil M-XN is then generated from these vectors where

Mm -1 N -jz !q (4.2-8)

Let 
"I I

"mr a d (m-)cos er (4.2-9)k X r

and
T nr 2r d (n-1) sin e . (4.2-10)

nr X y r

Define the matrices

J02 1  J022  J02d

EJ31 aJ 32 J03d (4.2-11,

ejo(p-0) jo J(p-1)2 Jo (p-I)d
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and

-, diag [dIII d2 2 ,..., dddl

- dia [aj 2l aJV2 2 .. 2d]. (4.2-12)

Also, define the vector

S a (is S29 ... ' 5d]" (4.2-13)

It can be shown that the vector X can be expressed as

K - (i )  ; i-1,2,...,q. (4.2-14)

Define

iJ(21  
J t

22s2 . . .~ J(
- )

. (4.2-15)

8 a 2d . . (p-a)d

The matrix M can then be expressed as

M - EF (4.2- 16)

where E and F Pre given by (4.2-11) and (4.2-15), respectively. In a

similar manner, N can be expressed as

N - EF (4.2-17)
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Using (4.2-16) and (4.2-17), the matrix pencil M-AN can be decomposed

as

M - XN - El XEOF

- E(I - AO)F. (4.2-18)

This decomposition satisfies the requirements of the pencil theorem.

Since, in general, M and N are rectangular matrices, either one of the

methods suggested in section 2.1 can be used to compute the generalized

eigenvalues. Observe that q generalized oigenvalues exist in this

case but only d of then vill lie on the unit circle. These d G.E.'s are of

the form

A, a dii 1 2 ; i£1,2,...,d. (4.2-19)
ii

The remaining (q-d) G.E.'s are at the origin. Thus, once the d

nonzero G.E.'s are known, the DOA's can be calculated from

6, - arcsin {j X ln ; i-l,2,...,d. (4.2-20)
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4.3 Pronyto Mthod

In this section Prony's method (441 is presented in the context

of array signal processing. We then show that Prony's algorithm

is related to the moving rectangular window presented in stction 4.1.

Prony's method is used for modeling data of equally spaced samples

by a linear combination of exponential*. The original procedure by

Baron de Prony fitted exactly d exponential. to 2d data measurements.

For the case in which only aiiapproxiaate f it of d exponential. to a data

set of a samples is desired, where m > 2d, a least squares estimation

procedure is used. This procedure is called the extended Prony method.

The model

d Z ki1

is to be used in the extended Prony method for approximating the

measured data yl(t). y 2(tIs.,y(t). The problem is to estimate the

parameters Z k; Th12..,. Iis forulation is similar to that

used in array signal processing where the problem is to estimate the

angular locations of d sources, sk(t) represents the complex envelopes of

the signals, and Z.k are purely imaginary parameters (the damping factors

are equal to zero). k,, is given by

1 Din (4.3-2
C k

where w ,c, D and ekare defined in section 4.1. j is the square root

of minus one. Because of the dependence of the model on the angles Oko
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kiwi,2... *do the measurements Yi(t) are written as yi(t,E). Thus, the

dual to equation (4.3-1) is

d Jok(i-1)y,(e_ - s' ,,(t) ay( - I k + n i(t) (4.3-3)

which is identical to (4.1-3). Assuming the signals to be deterministic

and the noise to be zero mean, the expected value of yi(t.2) yields xi(t.e)

given by
d JOk(i-il)x i(t..)  I a Sk M) e ;a. (4.3..,)

k-1

Finding the values of k; k-1,2,...,d that minimize the squared error

is a difficult nonlinear least squares problem. An alternative suboptizm-

solution was suggested by Prony.

The key to the Prony technique is to recognize that (4.3-4) is the

homogeneous solution to a constant coefficient linear difference equation,

the form of which is developed next. Expanding the expression for xi(t, 6 )

we obtain

xi(te) - s(t) ep(JO1 1 (i-1) + s2 (t) exp[J$ 2] (i-1)

+...+ 9 d(t ) exp[Jod ](1-1). (4.3-5)

Using (4.3-2), (4.3-5) becomes

xi - S 1 (-1) + s2(t) Z2(U-1) A

(t.- Z (4.3-6)

Evaluating (4.3-6) at i-1,2,...,m, we obtain
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(t s t) + a2 (t) + . d(t)

x 2 (t,e) S1 (t)ZI a *2 (t)Z 2+...+ d(t) Zd

(4.3-7)

x-(to.) s 1 t)zI  + s2( )z2  Sd(t) •z

Assume that the complex exponentials Zk, k-1,2,....d of (4.3-2) are the

roots of the algebraic equation (also known as the prediction-error filter

polynomial) given by

8I + a2Z + 83Z+ +...+ Bd+1zd = 0 (4.3-8)

where 8 is arbitrarily set equal to 1. In order to determine the

coefficients Bi 82,... od, the first equation of (4.3-7) is multiplied

by $i, the second one is multiplied by 829 and the dh one is multiplied

by 8d and finally the (d+l)th is multiplied by 8d+1 1 L. This results in

the set of equations

81 (t,2 - 61s() + 1s2 (t) +1. Blsd(t)

82 z2 (t,8) = B32s1C(t)Zl+8 2s2(t)Z2 +.. 32dCZ

2Xd2(t.9)a 2 ads1 (t)Z
- + 8ds2(t)Z2  +...+ dsd()zd-

xd+ (t.D - s()d + zd Ozd
d+(t)Z s2()Z2 +...+ sd(t)Z d
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Adding the above equations and using the fact that Z1, ZZh...,Zd are the

roots of (4.3-8), we have

BLx1(tS)+ 8 2x 2(c.9) +...+ xd I (t,')

s1 (t) [ 8 + 2Z. 4.. +8 d L + z d

(4.3-9)

+ t) a z+ + 8 zd-1 d
+ s2(t) Z2  . 2 + Z 2.4-

8 ()[ +a + + zd-1 d]=o.

d(t)fB1 2Z d + .. d  zd + ]Zd

Similarly, a set of (m-d-1) additional equations having the same form is

obtained by successively starting with the second, the third,..., the (m-d)th

equation. For convenience, we write x i(t.t) as x iin the following matrix

equation. The set of equations obtained following the procedure is written

in matrix form as

x x2  .... x d+ 0

x2  x 3 .... Xd2 82 0

x3 x4 .... Xd+3 83 0 (4-3.10)

X~ X x 1 0m d  xmd+ .... 
m J L
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(4.3-10), which comprises (m-d) equations in d unknowns, can be solved

by using a least squares approach. R[aving found the 8 1'69 the algebraic

equation (4.3-8) is formed and its zeros computed. Once these zeros,

Z k; k-1,2,...,d, are known, expression (4.3-2) is used to obtain the

directions of arrival e ks km1*2,...9d.

The relationship between Prony's method and the moving rectangular

window technique is demonstrated. These methods are related in the

sense that the information needed to estimate the angular positions of the

d sources is obtained by examining the dependence/independence of a t

of vectors formed from the averaged vector. i-1,2,...,d+l given in

(4.1-7).

Recall that the moving window approach examines the dependence of the

set of vectors X,-XX 1it it1929 ... d given in (4.1-20). On the other hand,

the algebraic equation (4.3-8). whose zeros are given by Z ks It.192,...,d in

(4.3-2), can be derived by examining the dependence of the vectors

i i,2,...,d+1, such that

a .. 0. (4.3-l1)

In view of (4.1-10), (4.3-11) can be written as

Y1 S4 + 2E" + ... + EO()S - 0 (4.3-12)

or, equivalently,
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For &quality to hold in (4.3-13), the matrix equation

-o 4+..+ d (4.3-14)

must be satisfied. With reference to (4.1-11), (4.3-14) can be

expanded into the following set of equations:

JOI jdO 1

jo 2  jdO 2

81 + 2 + +0

These equations are equivalent to the single polynomial equation

d
1 + 82Z +... + Z . (4.3-15)

where the zeros of (4.3-15) are given by

Zkt a ae( ; k - 1,2,..., d.

Thus, Prony's algebraic equation (4.3-8) can also be derived by studying

the dependence of the set of vectors X, 1-1,29. ... ,d+1. As shown the

DOA's can be obtained from its zeros.

We conclude that Prony's algorithm and the moving window algorithm

are related in the sense that each utilizes independence of a set of

vectors formed from the vectors X; iinl,2,...,d+1.
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4.4 Pisarenko's Algorithm

In this section another method, Pisarenko's algorithm (47], is

presented in the context of array signal processing. Pisarenko's

algorithm will also be shown to be related to the moving rectangular

window.

In Prony's method one is interested in obtaining the roots of

polynomial (4.3-8). Since we are interested in the roots of this

polynomial, the direction of the vector B where

a a (Bi t B2 , *., Bd+l ]

is the important criteria and not its magnitude. In the Prony method

we had set 8 d+ to I which constrains the 6 vector to be on the hyper-

plane 0d+1 - 1.

The goal of Pisarenko's method is to constrain the tip of the S vector

to be on a hypersphere. Then no constraints are placed in any direction.

A unit radius is chosen for the hypersphere such that

d+l 22S = 1 , . (4.4-1)
i-I

Without constraining 8d+l to I. Pisarenko solves the set of equations

(4.3-9). Given

EB - 0, (4.4-2)

where

x x2  .... xd+1

x2  x 3  .... xd+2

(4.4-3)
Em

XM-d Xm-d+ I m
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(4.4-2) is multipled by Ea to obtain

EBES - 0. (4.4-4)

Let

V (4.4-5)

Using (4.4-5), (4.4-4) becomes

VS - 0. (4.4-6)

Note that V is a (d+l)x(d+l) matrix whose columns span a d-dimensional

space. The smallest eigenvalue of V mst therefore be equal to zero.

Solving (4.4-6) for 8 is equivalent to solving for the eigenvector

corresponding to the smallest (zero) eigenvalue. In particular,

s ma X llest 1 - 0. (4.4-7)

Based on this observation, Pisarenko proposed to obtain 8 by comput-

ing the eigenvector of V corresponding to the smallest eigenvalue.

Once this eigenvector, which satisfies (4.4-I), is obtained, polynomial

(4.3-8) is formed and its zeros are computed. These zeros,

e ; iwI,2,...,d, contain the necessary information to estimate the

angular position of the d sources.

However, in practice, E8 is not equal to zero but to some residual

C. H. J. Price [471 solved

E 8- (4.4-8)

for 8 by minimizing the sums of squares of the residuals, subject to
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constraint (4.4-1). He showed that the vector 8, which minimizes the

squares of the residual, is the eigenvector of V corresponding to the

minimum eigenvalue.

The relationship between Pisarenko's method and the moving rec-

tangular window is demonstrated. Let V be the j- column of V. (4.4-6)
-j

can then be rewritten as

V + a V +.. . d+1d+1 " 0. (4.4-9)

Since the vectors V ; J-1,2,..., d+I, are dependent, then there mast

exist a set of constants 8 1 0 such that (4.4-9) is verified. Thus

Pisarenko's algorithm examines the dependence of the set

N is, V a... , V i l (4.4-10)

where

i j-1 -j =2 =*** 'ZXX

j a 1,2,...,d+1. (4.4-11)

Recall that X; J - 1,2,..., d+I, are the vectors used in the moving

rectangular window method. Polynomial (4.3-8) caa also be obtained

by examining the dependence of the set (4.4-10). Making use of (4.1-13),

th
the ij- entry of V or Vii can be expressed as
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V -< X >
<,Et (i-1)S, 00( -1) s>

i 5 (P H(j-1) ER E €(i-1) S (4.4-1:

Using (4.4-12). VI can be written as

SH  ER O(-1) S

S H 0 H EE (II S

SH EE €(i-1) S

Define the matrix R to be

1* J * 2 * -j o
1 2d

ste d~ sl

* -jd * -JdO2  * - jdbd
s1a s • ... 8de

where (' denotes the complex conjugate. The vector V can be expressed

in terms of R as
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V R EH E 0(j-1) S. (4.4-13)

Utilizing (4.4-13) in (4.4-9), we obtain

BR E RE S+8 2 R E E S+...

+ 8d . E E P(d-1) S + Bd+I R E E 4 (d)S 0 (4.4-14)

or

R EH [$i1 + 82 0 +...+ 8 d+1 D (d) - 0. (4.4-15)

For this equality to hold for an arbitrary choice of S it must be true

that
S1+8 2  +... d1 8 P (d) . 0. (4.4-16)

Using (4.1-11), this matrix equation can be expanded into

J01 jdO 1
81 + 82 + .+ Bd+1 - 0

J (P2 jd 2

81 B2 + + Bd+1 e -0 (4.4-17)

•Jod JdO d81 + 82 e + .+ ad+1 d 0.

This set of equation is equivalent to the single polynomial equation.

Zd

1 + 82Z + ... + 
8 d+1 Z 0 (4.4-18)

where the zeros of (4.4-18) are given by
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Z- ; i-,2,..., d. (4.4-19)

Indeed polynomial (4.4-18) which was derived by analyzing the dependence

of the set (4.4-10) is the same as the polynomial given in (4.3-8).

One can then conclude that Pisarenko's algorithm and the moving

vindow algorithm are related in the sense that each utilizes the depen-

dence/independence of a set of vectors formed from the same vectors

X; i-1,2,...,d4l.
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4.5 Comparative Performance

In this section the comparative performance of the moving

window, Prony, and Pisarenko methods is evaluated by means of

computer simulation.

The model used for the simulation consists of two plane waves

(d-2) arising from two coherent point sources which are incident on

a linear array consisting of eight (a-8) equally spaced sensor

elements. The sources are assumed to be located at 1  18 and

e2 a 22". The angular separation, Ae - 4, is less than one fourth

of the array's Rayleigh angular resolution which, for the given array,

is about - Z 0.28 radians Z 16.3 degrees. Assume N snapshots
M-i

th
are available for processing where the j- snapshot is given by

S (t ),. y (t e) }.

For a given snapshot, the measuremut at the i-h sensor is composed

of signal and noise components as defined in (4.1-3). Hence,

d 0

yi(t:.e) *I sk.(t) exp ({-'. D(i-1) sin ek} + ni (t)

d
SI s(t) exp (j 27 (i-1) sin 6 1 + n(t)
k-l1

where a'i(t) is generatad in the computer simulation as a zero mean,

unit variance, white complex Gaussian noise. The signal portion is

generated using the expression
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d

I (t) exp {j 2lr (i-I) sin ek}; i11,2,...,m
k-(

where D - i/2, d - 2, e 1  1*, e2 ' 22* and m - 8. It is assumed

that the N snapshots are taken at a rate sufficiently fast such that

sk(t); k-1,2 remain approximately constant over the N snapshots.

Assuming the 2 sources to be of equal power with sL(t) - s 2 (t) - S,

the signal-to-noise ratio SR is defined to be

P
SNR --

Pa

where Ps is the signal power at sensor I and Pn is the noise power

n s 4s 2 2
SNR - at . 2LLP n 21a  a

The cases considered in the siaulation are tabulated in Table 1.

SM(dB) Is1

30 22.36

25 12.57

20 7.07

10 2.24

TABLE I

Using the source and receiver model as described above, the moving

window, Prony, and Pisarenko methods were used to estimate 81 and e2 .
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Quantitative results of the three methods are given in Tables 2

and 3. 10 Monte Carlo runs of 500 snapshots each were performed for

each SIR in the range of 10 - 30 dB. It can be observed from Table 2

that, at large enough SVR, the angular positions of the two sources

are nicely resolved. At lower SNR, two sources are still resolved

but the bias and variance of the estimates of 81 and 82 are larger.

Observe that the moving window using generalized eigenvalues performs

better than the Gram approach.

An unexpected result .is that the Prony method and the moving

window method using the generalized eigenvalue approach have identical

performance. This is explained below by showing that identical equa-

tions are solved in both techniques. Let

-it - (xI, X 2P .... N6

-12 { 1 f'2' * * "'Y

_3 - (13 , X4, ... ,x7}

3" ' "3' '4' -' '81'}

Given d * 2 and the vectors 113 X2, and X the Prony method leads to

the equation

T T 2L
1 23

The least squares solution of the above set of linear equations

is given by
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.1 Ki 2 =3 (4.5-2)
I 1 11ro 2-

2 l2

Recall that the linear produce of two vectors I and X is defined to be

<,:_ _ > - -l 21 (4.5-3)

Using (4.5-3), (4.5-2) can be rewritten as

Fl Xldlrlr"
L121 x 22J L 2 2

Utilizing Cramr's rule, a 1 and a2 are found to be

x13 X22 x23 X12
I  1, X12 x 21 - 22 x11

and

C x23 XI 11 x13 X21
2 X2 1 X12 X 2 2 xl1

This results in the quadratic equation

C 1 Il
2 + a2 X+ 1 0 0. (4.5-4)

Substituting for a1 and a2 and simplifying yields the equation
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( 13X22 -X23X12) 2 +- (X23 X11 - l 1312 1)k + (121X12 - 122111) u 0. (4.5-5)

The equation in the moving windov approach using generalized

eigean-alues is nov developed. For this, the matrix pencil

-T t
M - XN- 1 1 2  - 1x2 _3

i i 2JL 11
is first formed. 1i-XN is the raltpied by HO yielding

h21 22 gn22 X23

X11 - X12 X12 - X13

X21 " )122 X 22 " XX 23

- (13X22 - X23X12)X2 + (X23Xll - X13X21) + (X21X12 - X22Xll) - 0. (4.5-6)

Note that (4.5-5) and (4.5-6) are identical equations. Consequently,

the two algorithms produce the sam results.

From Table 2 it is seen that the bias and variance of all three

methods is large at LO dB. To investigate whether e1 and e2 can be

better estimated using additional snapshots, 10 Monte Carlo runs were
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performed vith the number of snapshots increased from 500 to 5000

while SR was maintained at 10 dB. The results are shown in Table 4.

As the number of snapshots is increased, the accuracy of the estimates

for both angles also increases. Correspondingly, the variance given

in Table 5 decreases as the number of snapshots increase. The reason

for this improvement is the well known fact that the variance of the

unbiased estimator

1 N

decreases as 1/N thus yielding better results as N increases.

Tables 6 and 7 show the performance of these methods as 6e is

successively decreased to 3, 2" and 1*. For sufficiently large SNR,

the resolution capabilities of these methods compare well. Note

that when 68 is 1, all methods fail to resolve the 2 sources. In

this case, only one source is observed, and the estimated location of

this source has a large bias and variance.

Tables 8 and 9 live the results of the three methods as the sources

are kept 4" apart and are moved from broadside to endfire of the array.

Toward the endfire of the array, DOA estimation becomes worse. This

is because the gain of the array is greatly reduced at endfire.

Computer simulations were also carried out to investigate the

performance of the moving window as given in section 4.1-2 where the

signals are assumed to be random with zero mean. Its performance is

compared to that of the ESPRIT algorithm under similar conditions. The
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PRONY PISAWIKO MOVING WINDOW

GRAM GEN. EIGEN.

81982 gI 2 1 g2 §1 g2 1 2

0,4 .02 4.05 .05 4.02 -.30 4.39 .02 4.05

8.12 7.89 11.90 7.93 11.87 7.56 12.24 7.89 11.90

18,22 18.02 22.01 18.06 21.97 17.62 22.43 18.02 22.01

28,32 27.71 31.80 27.76 31.76 27.07 32.48 27.71 31.80

36,40 35.97 39.99 36.02 39.94 34.86 41.18 35.97 39.99

40,44 39.97 43.91 40.05 43.82 38.50 45.52 39.97 43.91

46,50 45.39 49.71 45.41 49.70 43.12 52.32 45.39 49.71

54,58 53.79 56.47 53.16 57.22 48.45 63.35 53.79 56.47

62,66 61.53 65.51 61.55 65.6( -10.99 64.33 61.53 65.51

70,74 7.06 74.18 24.39 74.0, -52.16 54.61 7.06 74.18

74,78 -4.68 75.85 -8.32 75.8, -45.97 52.1 -4.68 75.85

82,86 -7.65 83.67 -18.71 83.67 -35.04 41.0( -7.65 83.67

86,90 3.68 87.17 -4.77 87.11 -35.93 40.1 3.68 87.17

Table 8: Mean of 81 and e2 as the sources move from broadside to

endfire (500 snapshots, 10 Monte Carlo runs, 30 dB).
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PROW! PISA.EMN MOVING WINDOW

GRAM GEiN. EIGEN.

19201 222 2a 2a2 2a2___________ 22 12

0,4 .08 .08 .08 .08 .11 .10 .08 .08

8,12 .03 .03 .04 .03 .06 .04 .03 .03

18,22 .10 .09 .11 .09 .09 .10 .10 .09

28,32 .07 .05 .07 .06 .16 .09 .07 .05

36,40 .13 .14 .16 .14 .34 .53 .13 .14

40,44 .11 .28 .13 .36 .47 1.02 .11 .28

46,50 1.03 .47 .90 .55 1.75 2.47 1.03 .47

54,58 3.01 .29 1.80 .26 5.18 9.29 3.01 .29

62,66 6.07 4.21 4.44 3.75 3852.61 237.12 6.07 4.21

70,74 3025.31 26.68 3591.77 11.28 505.57 95.99 3025.31 26.68

74,78 1277.36 .0006 2005.98 .011 821.72 504.60 1277.36 .0006

82,86 318.77 .0006 835.92 .001 1454.45 1508.38 318.77 .0006

86,90 447.56 .003 1166.39 .005 1444.15 1557.80 447.56 .003

Table 9: variance of e1 and 82 as the sources move from broadside to

endfire (500 snapshots, 10 Monte Carlo runs, 30 dB).
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model used for simllation is the same as the one described above

except that the sources are now made incoherent. The reason for

this is the ESPRIT algorithm fails for coherent sources.

Making the sources incoherent gives us a fair comparison of the

moving window and ESPRIT. The signals are generated by using the

expression.

2 D
I sk(t) exp {j (i-I) sin eki zp {j O.}

and the noise is generated as before. Two cases were investigated in this

simulation. In case 1, sk(t) is kept constant and a, and a2 are inde-

pendent random phase angles uniformly distributed in the interval [-wr].

In case 2, sk(t) is random with a Rayleigh distribution independent of

I and a2' while a and a2 are still independent random phase angles

uniformly distributed in the interval [-w, fl. Tables 10 and 11 show

the results for case 1, and Tables 12 and 13 show those of case 2.

The matrices N and N for the moving window are formed as explained

in section 4.1-2. For the ESPRIT algorithm, the first subarray is

formed of the first, third, fifth and seventh sensors while the second

subarray is formed of the second, fourth, sixth and eighth sensors of

the linear array. These two subarrays are used to form the covariance

matrices ESPRIT calls for. For every Monte Carlo run, the matrix

entries for both techniques were computed from 100 snapshots. 50

Monte Carlo runs were performed using independent data sets.
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One can conclude from table 10 - 13 that the moving window

compares favorably to ESPRIT. The bias is slightly smaller for

the moving window technique while its variance in substantially smaller.
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CHAPTER 5

CONCLUSION AND SUGGESTIONS

FOR FUTURE RESEARCH

5.1 Conclusion

Determination of the angular locations of d sources using an

array of a sensors was the main concern of this reasarch. The

signals generated by the d sources are assumed to be narrowband.

Until recently the methods developed to deal with this problem

were classified as search procedures because either

1) the algorithm solves a constrained optimization problem for

each direction of look,

2) a beam is formed and its energy computed for each direction

of look, or

3) a spatial correlation matrix is formed. The array manifold

is then searched for the values of a(6) which minimize a predefined

expression.

Although these search techniques may have superresolution capabil-

ities, they are, nevertheless, coaputionally very complex. Because

of this complexity, nonsearch procedures have been proposed. These

algorithm have the following advantages over search procedures:

L) They are computationally less complex because a search pro-

cedure is not needed.

2) They do not require knowledge of element characteristics.

3) They do not require a calibration of the array. This

completely eliminates need for storage of the array manifold which
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can be very large for mu ltidimensional problems.

4) They may not require knovledge of the array geometry, as is

the case with ISPlIT.

A generalized formulation is proposed for these nonsearch procedures.

This forulation consists of forming a matrix pencil M-XN and computing

its rank reducing numbers. The rank reducing numbers are the generalized

alenvalues for the case of a square matrix pencil. For the case of

a rectangular matrix pencil, the rank reducing numbers can be obtained

by either using the Grammian approach or by transforming the problem into

a generalized eigenvalue problem. The pencil theorem given in chapter

2 establishes the relationship between the rank reducing values of X

and a functional form f (Os) which is a nonlinear function of the

angular position of the Ia source; i-L,2,...,d. The form of f(4 ) is

determined by the operators applied to the measurements.

Three different operators are presented in this dissertation: the

phase delay operator, the sumnation operator, and the moving window

operator. All three methods are analyzed and formualated in terms of

the generalized formalation. The matrix decomposition required by

the pencil theorem hops to explain why ESPRIT fails for coherent sig-

nals. In particular, the rank requirement fails when the signals are

coherent. The moving window and the summation operator vete shown not

to violate any of the pencil theorem requirements and thus do not fail

for coherent signals.

The flexibility of the matrix pencil approach allowed us to formu-

late the moving window operator for the case of deterministic signals as
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vewial as for the zero mean random case. Two well known methods in the

field of system identification, namely Prony's and Pisarenko's methods,

are applied to the problem of direction finding. Their relationship

to the soving window technique is demnstrated. All three techniques

extract the information about the angular locations of the d signals

by examinIng the dependence/independence of a set of vectors. Each

technique derives the set of vectors as a transformation of the s

(d + 1) vectors.

The nonsesrcb methods presented in this rbsesrch are capable

of aking high resolution DOA estimation. These methods have great

potential because of their computational sWlicity. They are easy

and cheap to Implement.

As one develops an idea, there are always new questions and prob-

lems that arise in the process. In the following section suggestions

are made for future research.

5.2 Sugzestions for Puture Research

The generalized approach is, as its name indicates, a very general

concept. The rank reducing numbers, AID A2 ..., Xd' of the matrix

pencil M-AN are related to the directions of arrival thru a functional

form that depends on the operator applied to the measurements. The

possibility of using operators other than those discussed in this

dissertation remains to be explored.

The forsulation of different methods in terms of a comnon frame-

work has the advantage that their performance can be compared within
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the generalized approach. For example, suppose tvo methods are formu-

lated in terms of the matrix pencil. Processing of the matrix pencil

is identical for both methods. However, the entries in the pencil will

differ. A statistical analysis of these entries can then be carried

out. The method whose entries have smaller bias and smaller variance

will perform better.

We know from the design of FIR filters that different windows have

different characteristics. The window used in chapter 4 is a rectangular

window. It can very easily be shown that any shape window would work.

The question is. "How do differently shaped windows affect the per-

formance of the moving window operator?"

It was shown in section 4.1-3 that prefiltering can be included into

these nonsearch procedures without disturbing the matrix decomposition

required by the pencil theorem. An important issue concerning pre-

filtering is the design of a suitable filter. If one knew enough about

the noise and the desired signal, one would be able to build a filter

to improve the signal-to-noise ratio and, therefore, improve the per-

foruance of the technique.

The signals in direction finding, spectral estimation, system Identi-

fication, and adaptive arrays can all be modeled as a sum of exponentials.

Consequently, effort should be devoted to applying the results of this

disertation to those other areas.

Another issue that should be given consideration is sensor coupling.

The effect of sensor coupling has not been discussed in the open liter-

ature on direction finding. Investigation into this problem might help

improve existing algorithms.
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The generalized framework developed in this research relies

on the computation of the rank reducing numbers of a matrix pencil

N-XN. An efficient algorithm (48] based on the Schur decomposition

has been developed for the case of a square matrix pencil. However,

for the case of a rectangular pencil, no efficient algorithm has been

shown for explicitly computing the coefficients of the polynomial

P(X) = det (G) - 0. Preliminary work suggests that such an approach

is possible (42, 47].
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